مروری بر نقش و کاربرد مخمرها در مهار زیستی بیماری‌های گیاهی

نوع مقاله : علمی-مروری

نویسندگان

1 بخش تحقیقات گیاهپزشکی، مرکز تحقیقات و آموزش کشاورزی آذربایجان غربی، سازمان تحقیقات، آموزش و ترویج کشاورزی، ارومیه، ایران

2 گروه کشاورزی، پژوهشکده گیاهان و مواد اولیه دارویی دانشگاه شهید بهشتی، اوین، تهران، ایران

چکیده

در شرایطی که عوامل بیماری­زای گیاهی خسارت زیادی در مراحل مختلف داشت و برداشت گیاهان ایجاد می­کنند، استفاده از سموم شیمیایی سنتزی اجتناب‌ناپذیر بوده و خسارت­های جبران­ناپذیری برای محیط زیست و سلامت انسان در پی ­دارد. جایگزینی سموم شیمیایی با عوامل زیستی مفید می­تواند در کاهش این خطرات و خسارت­ها مؤثر واقع شود. در این بین، مخمرها با توجه به گستردگی، قابلیت مهار زیستی، سازگاری با محیط زیست و ایمن بودن برای سلامت انسان، جایگزین­های امیدوار کننده­ای برای ترکیبات شیمیایی حفاظت از گیاهان هستند و در طی چند دهه گذشته، مطالعه بر روی سازوکارهای زیست مهاری مخمرها به­طور گسترده­ای صورت پذیرفته است. در این بررسی، به مرور تحقیقات اساسی در مورد سازوکارهای مخمرهای مهار زیستی (شامل رقابت ،ترشح آنزیم، تولید سم، مواد فرّار، مایکوپارازیت و القای مقاومت) به‌عنوان فاکتورهای محافظت از گیاهان پرداخته می‌شود. همچنین مروری اجمالی بر مراحل تجاری سازی و فرآورده­های ثبت شده زیستی بر پایه مخمر ارایه شده است. بطورکلی این بررسی، کمبود مطالعات تکمیلی در مورد مکانیسم­های مهار زیستی مخمرها و حتی مخمرهای ثبت­شده را نشان می­دهد. بنابراین می­توان گفت شناسایی مکانیسم­های مهار زیستی مخمرها با جزییات بیشتر، همچنان یکی از زمینه­های تحقیقاتی است و درک بهتر آن‌ها می­تواند زمینه ساز توسعه محصولات تجاری بر پایه مخمر برای حفاظت از گیاهان باشد.

کلیدواژه‌ها


Adams, D.J. 2004. Fungal cell wall chitinases and glucanases. Microbiology, 150: 2029–2035
Alexopoulos, C.J., Mims, C.W. & Blackwell, M. 1996. Introductory Mycology. John Wiley & Sons Inc., New York.
Arroyo–Lopez, F.N., Querol, A., Bautista–Gallego, J. & Garrido–Fernandez, A. 2008. Role of yeasts in table olive production. International Journal of Food Microbiology, 128: 189–196.
Banjara, N., Nickerson, K.W., Suhr, M.J. & Hallen–Adams, H.E. 2016. Killer toxin from several food–derived Debaryomyces hansenii strains effective against pathogenic Candida yeasts. International of Journal of Food Microbiology, 222: 23–29
Bar–Shimon, M. 2004. Characterization of extracellular lytic enzymes produced by the yeast biocontrol agent Candida oleophila. Curr Genet, 45: 140–148.
Bekatorou, A., Psarianos, C. & Koutinas, A.A. 2006. Production of food grade yeasts. Food Technology and Biotechnology, 44: 407–415.
Belda, I., Ruiz, J., Alonso, A., Marquina, D. & Santos, A. 2017. The biology of Pichia membranifaciens killer toxins, Toxins (Basel).
Ben–Arie, R., Droby, S., Zutkhi, J., Cohen, L., Weiss, B., Sari, P., Zeidman, M., Daus, A. & Chalutz, E. 1991. Preharvest and postharvest biological control of Rhizopus and Botrytis bunch rots of table grapes with antagonistic yeasts. In: proceedings of biological control of postharvest diseases of fruits and vegetables Workshop, pp. 100–113. Washington, DC: United States Department of Agriculture, Agricultural Research Service.
Barkai–Golan, G.R. 2001. Postharvest disease of fruit and vegetables: Development and control. Amsterdam, NL: Elsevier Science B.V. 418 pp.
Blachinsky, D., Antonov, J., Bercovitz, A.; El–ad, B., Feldman, K., Husid, A., Lazare, M., Marcov, N., Shamai, I. & Droby, S. 2007. Commercial applications of “Shemer” for the control of pre– and postharvest diseases. International organization for biological and integrated control. 30: 75–78.
Butler, G. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature, 459: 657–662.
Buxdorf, K., Rahat, I. Gafni, A. & Levy, M. 2013a. The epiphytic fungus Pseudozyma aphidis induces jasmonic acid– and salicylic acid/ nonexpressor of PR1–independent local and systemic resistance. Plant Physiology, 161: 2014–2022.
Buxdorf, K., Rahat, I. & Levy, M. 2013b. Pseudozyma aphidis induces ethylene–independent resistance in plants. Plant Signal Behav8: e26273.
Calderon, C.E., Rotem, N., Harris, R., Vela–Corcia, D. & Levy, M. 2019. Pseudozyma aphidis activates reactive oxygen species production, programmed cell death and morphological alterations in the necrotrophic fungus Botrytis cinerea. Molcular Plant Pathology, 20: 562– 574.
Calvente, V., Benuzzi, D. & Sanz de Tosetti, M.I. 1999. Antagonistic action of siderophores from Rhodotorula glutinis upon the postharvest pathogen Penicillium expansum. International Biodeterioration Biodegradation, 43: 167–172.
Chisholm, S.T., Coaker, G., Day, B. & Staskawicz, B.J. 2006. Host–microbe interactions: shaping the evolution of the plant immune response. Cell, 124: 803–814.
Costa–Orlandi, C.B. 2017. Fungal biofilms and polymicrobial diseases. J Fungi (Basel), 3:22.
da Cunha, T., Ferraz, L. P., Wehr, P. P. & Kupper, K. C. 2018. Antifungal activity and action mechanisms of yeasts isolates from citrus against Penicillium italicum. International journal of food microbiology, 276: 20–27.
Dahiya, N., Tewari, R. & Hoondal, G.S. 2006. Biotechnological aspects of chitinolytic enzymes: a review. Applied Microbiology and Biotechnology, 71: 773–782.
De Tenório, D.A., Medeiros, E., Lima, C. S. & da Silva, J.M. 2019. Biological control of Rhizoctonia solani in cowpea plants using yeast. Tropical Plant Pathology, 44: 113–119.
De Miccolis Angelini, R.M., Rotolo, C., Gerin, D., Abate, D., Pollastro, S. & Faretra, F. 2019. Global transcriptome analysis and differentially expressed genes in grapevine after application of the yeastderived defense inducer cerevisane. Pest Managment Science, 75: 2020–2033.
Dhami, M. K., Hartwig, T. & Fukami,T. 2016. Genetic basis of priority effects: insights from nectar yeast. Proc ceding Biological Science.
Di Francesco, A., Ugolini, L., Lazzeri, L. & Mari, M. 2014. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81: 8–14.
Dogi, C.A., Armando, R., Luduena, R., de Moreno de LeBlanc, A., Rosa, C.A., Dalcero, A. & Cavaglieri, L. 2011. Saccharomyces cerevisiae strains retain their viability and aflatoxin B1 binding ability under gastrointestinal conditions and improve ruminal fermentation. Food Additive and Contaminants Part A, 28: 1705–1711.
Droby, S., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E.E. & Porat, R. 2002. Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology, 92: 393–399.
Droby, S. & El–Gerberia, B. 2006. Yeast Metschnikowia fructicola NRRL Y–30752 for inhibiting deleterious microorganisms on plants. USA Patent, 7 Feb 2006.
Droby, S., Wisniewski, M., Macarisin, D. & Wilson, C. 2009. Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biology and Technology, 52: 137–145.
Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D. & Jijakli, M.H. 2016. The science, development, and commercialization of postharvest biocontrol products. Postharvest Biology and Technology, 122: 22–29.
Druvefors, U.A. 2004. Yeast biocontrol of grain spoliage moulds–mode of action of Pichia anomala. Doctor٫s dissertation, performed at the Department of Microbiology Swedish University of Agriculture Science, 44 pp.
Dukare, A.S., Paul, S., Nambi, V.E., Gupta, R.K., Singh, R., Sharma, K. & Vishwakarma, R.K. 2018. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: A review. Food Science Nutrition, 59: 1498–1513.
El–Ghaout, A., Smilanick, J., Wisniewski, M. & Wilson, C.L. 2000. Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2–deoxy–d–glucose. Plant Disease, 84: 249–253.
El–Mehalawy, A.A. 2004. The rhizosphere yeast fungi as biocontrol agents for wilt disease of kidney bean caused by Fusarium oxysporum. International Journal Agriculture Biology, 6: 310–316.
El–Tarabily, K.A., Soliman, M.H., Nassar, A.H., Al–Hassani, H.A., Sivasithamparam, K., McKenna, F. & Hardy, G.E. 2000. Biologi– cal control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathology, 49: 573–583.
El–Tarabily, K.A., Nassar, A.H., Hardy, G.E. & Sivasithamparam, K. 2003. Fish emulsion as a food base for rhizobacteria promoting growth of radish (Raphanus sativus L. var. sativus) in a sandy soil. Plant and Soil, 252: 397–411.
El–Tarabily, K.A. & Sivasithamparam, K. 2006. Potential of yeasts as biocontrol agents of soil–borne fungal plant pathogens and as plant growth promoters. Mycoscience, 47: 25– 35.
European Food Safety Authority (EFSA). 2013. Conclusion on the peer review of the pesticide risk assessment of the active substance Aureobasidium pullulans (strains DSM 14940 and DSM 14941). EFSA Journal, 11: 3183.
European Food Safety Authority (EFSA) .2015a. Conclusion on the peer review of the pesticide risk assessment of the active substance Candida oleophila strain O. EFSA Journal, 10: 2944.
European Food Safety Authority (EFSA). 2015b. Peer review of the pesticide risk assessment of the active substance Saccharomyces cerevisiae strain LAS02. EFSA Journal, 13: 4322.
Fanning, S.& Mitchell, A.P. 2012. Fungal biofilms. PLoS Pathog, 8:e1002585.
Farbo, M.G. 2018. Effect of yeast volatile organic compounds on ochratoxin A–producing Aspergillus carbonarius and A. ochraceus. International Journal of Food and Microbiology, 284: 1–10.
Ferraz, L.P., da Cunha, T., da Silva, A.C. & Kupper, K.C. 2016. Biocontrol ability and putative mode of action of yeasts against Geotrichum citri–aurantii in citrus fruit. Microbiological research, 188: 72–79.
Filonow, A.B., Vishniac, H.S., Anderson, J.A. & Janisiewicz, W.J. 1996. Biological control of Botrytis cinerea in apple by yeasts from various habitats and their putative mechanisms of antagonism. Biological Control, 7: 212–220.
Fitzpatrick, D.A. 2012. Horizontal gene transfer in fungi. FEMS Microbiol Letter, 329: 1–8.
Freimoser, F.M., Rueda‑Mejia, M.P., Tilocca, B. & Migheli, Q. 2019. Biocontrol yeasts: mechanisms and applications. World Journal of Microbiology and Biotechnology, 35: 154.
Gafni, A., Calderon, C.E., Harris, R., Buxdorf, K., Dafa–Berger, A., Zeilinger–Reichert, E. & Levy, M. 2015. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Front Plant Science, 6: 132.
Gauthier, G.M. 2015. Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathog, 11:e1004608.
Gauthier, G.M. 2017. Fungal dimorphism and virulence: molecular mechanisms for temperature adaptation, immune evasion, and in vivo survival. Mediators Inflamm, 2017: 8491383.
Giobbe, S., Marceddu, S., Scherm, B., Zara, G. Mazzarello, V.L. Budroni, M. & Migheli, Q. 2007. The strange case of a biofilm–forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Reserch, 7: 1389–1398.
Golubev, W.I. 2006. Antagonistic interactions among yeasts CA Rose G Peter (Eds) Biodiversity and Ecophysiology of Yeasts Springer–Verlag Berlin, 197–219, 10.1007/3–540–30985–3–10.
González Pereyra, M.L. & Garcia, G. 2017. Aflatoxins and Saccharomyces cerevisiae: Yeast modulates the intestinal effect of aflatoxins, while aflatoxin B1 influences yeast ultrastructure. World Mycotoxin Journal, 10(2): 171–181.
Gore–Lloyd, D. 2019. Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Molcular Microbiology, 112: 317–332.
Gozzo, F. & Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. Journal of Agriculture Food Chemistery, 61: 12473–12491
Hadwiger, L.A. McDonel, H. & Glawe, D. 2015. Wild yeast strains as prospective candidates to induce resistance against potato late blight (Phytophthora infestans). American Journal of Potato Reserch, 92: 379–386.
Hernandez, A., Martin, A., Aranda, E. Perez–Nevado, F. & Cordoba, M.G. 2007. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiology, 24: 346–351.
Helbig's, J. 2002. Ability of the antagonistic yeast Cryptococcus albidus to control Botrytis cinerea in strawberry. BioControl. 47(1): 85–99.
Huang, R., Li, G.Q., Zhang, J., Yang, L., Che, H.J., Jiang, D.H. & Huang, H.C. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101: 859–869.
Janisiewicz, W.J. & Korsten, L.2002. Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40: 411–441.
Jiang, B., Ram, A.F., Sheraton, J., Klis, F.M. & Bussey, H. 1995. Regulation of cell wall beta–glucan assembly: pTC1 negatively affects PBS2 action in a pathway that includes modulation of EXG1 transcription. Molecular Gen Genet, 248: 260–269.
Jijak, M.H., Lepoivre, P. & Grevesse. C. 1999. Yeast species for biocontrol of apple post–harvest diseases. Biotechnological approaches in biocontrol of plant pathogens. Kluwer Academic/Plenum Publishers, New York, 31–49.
Jones, J.D. & Dang, J.L. 2006. The plant immune system. Nature, 444: 323–329.
Junker, K., Hesselbart, A. & Wendland, J. 2017. Draft genome sequence of Saccharomycopsis fodiens CBS 8332, a necrotrophic mycoparasite with biocontrol potential. Genome Announc.
Junker, K., Bravo Ruiz, G., Lorenz, A., Walker, L., Gow, N.A.R. & Wendland, J. 2018. The mycoparasitic yeast Saccharomycopsis schoenii predates and kills multi–drug resistant Candida auris. Scientific Reports, 8: 14959.
Junker, K. Chailyan, A., Hesselbart, A., Forster, J. & Wendland, J. 2019. Multi–omics characterization of the necrotrophic mycoparasite Saccharomycopsis schoenii. PLoS Pathogens,15: e1007692.
Kamel, S.M., Morsy, E.M. & Massoud, O.N. 2016. Potentiality of some Yeast Species as Biocontrol Agents Against Fusarium oxysporum f. sp. cucumerinum the Causal Agent of Cucumber Wilt. Egyptian Journal of Biological Pest Control, 26(2): 185–193.
Keyhani, N.O. 2018. Lipid biology in fungal stress and virulence: entomopathogenic fungi. Fungal Biology, 122: 420–429.
Khan, N.I., Schisler, D.A., Boehm, M.J., Lipps, P.E. & Slininger, P.J. 2004. Field testing of antagonists of fusarium head blight incited by Gibberella zeae. Biological Control, 29: 245–255.
Khoshayand, M.R., Mokhtarnejad, L., Etebarian, H.R., Farzaneh, M.& Sheikhpour, P. 2013.Screening and Optimization of Industrial Medium for Mass Production of Candida membranifaciens, Biocontrol Agent of Blue Mold and Gray Mold Diseases of Apple. Journal of Applied Research in Plant Protection, 2(2): 1–16. (In Persian with English summary).
Kreger–van Rij, N.J. 1984. The yeast: a taxonomic study, 3rd edn. Amsterdam: Elsivier, 1082pp
Kombrink, A., Sanchez–Vallet, A. & Thomma, B.P. 2011. The role of chitin detection in plant–pathogen interactions. Microbes Infection, 13: 1168–1176.
Kowalska, J., Drożdżyński, D., Remlein–Starosta, D., Sas–Paszt, L. & Malusá, E. 2012. Use of Cryptococcus albidus for controlling grey mould in the production and storage of organically grown strawberries. Journal of Plant Disease and Protectection, 119: 174–178.
Kunz, S. 2004. Development of “Blossom–Protect” – a yeast preparation for the reduction of blossom infections by fire blight. 11th International Conference on Cultivation Technique and Phytopathological problems in organic fruit–growing. Weinsberg, Germany.
Kunz, S. & Haug, P. 2006. Development of a strategy for fire blight control in organic fruit growing. In: Boos M (ed) 12th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit–Growing. Weinsberg. 2006. Fördergemeinschaft ökologischer Obstbau: 113–117.
Kunz, S., Schmitt, A. & Haug, P. 2011. Field testing of strategies for fire blight control in organic fruit growing. Acta Hortic. 896: 431–436.
Kurtzman, C.P., Fell, J.W., Boekhout, T. & Robert, V. 2011a. Methods for isolation, phenotypic characterization and maintenance of yeasts. pp. 87–110. In: Kurtzman, C.P., Fell, J.W. & Boekhout, T. (eds). The Yeasts: A Taxonomic Study, 5th edn., Elsevier, Amsterdam.
Kvasnikov, E.I., Nagornaya, S.S. & Shchelokova, J.F. 1975. Distribution of the yeast Rhodosporidium diobovatum in soil and plants. Mikrobiologiia. 44: 753–756. In Russian. (English translation in: Microbiology. 44: 679–681.
Langner, T. & Gohre, V. 2015. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Curr Genet.
Lee, G., Lee, S.H., Kim, K.M. & Ryu, C.M. 2017. Foliar application of the leaf–colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Reports, 7: 39432.
Lemos, W.J. Jr et al. 2016. Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold disease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Front Microbiology, 7: 1249.
Lima, G., Ippolito, A., Nigro, F. & Salerno, M. 1997. Effectiveness of Aureobasidium pullulans and Candida oleophila against post–harvest stawbery rots. Postharvest Biology and Technology, 10: 169–178.
Liu, T. et al. 2012. Chitin–induced dimerization activates a plant immune receptor. Science, 336: 1160–1164.
Liu, P., Luo, L. & Long, C.A. 2013. Characterization of competition for nutrients in the biocontrol of Penicillium italicum by Kloeckera apiculata. Biological control, 67(2): 157–162.
Liu, X. et al. 2014. Host–induced bacterial cell wall decomposition mediates pattern–triggered immunity in Arabidopsis. Elife.
Luongo, L.M., Galli, L., Corazza, E., Meekes, L., Lombaers–van der Plas, C. & Köhl, J. 2005. Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Science and Technology, 15: 229–242.
Mbili, N.C. 2012. Evaluation of integrated control of postharvest grey mould and blue mould of pome fruit using yeast, potassium silicate and hot water treatments. University of KwaZulu–Natal.
McLaughlin, R. J., Wisniewski, M. E., Wilson, C. L. & Chalutz, E. 1990. Effects of inoculum concentration and salt solution on biological control of postharvest diseases of apple with Candida sp. Phytopathology, 80: 456–461.
Miceli, M.H., Diaz, J.A. & Lee, S.A. 2011. Emerging opportunistic yeast infections. Lancet Infect Disease, 11: 142–151.
Morath, S.U., Hung, R. & Bennett, J.W. 2012. Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biology Revise, 26: 73–83.
Mokhtarnejad, L., Etebarian, H.R. & Fazeli, M.R. 2010. Stability of Pichia guillermondii yeast in powder formulations and evaluation of the ability to control formulations against blue apple mold. Iranian journal of plant protection science, 41(1): 9–18. (In Persian with English summary).
Mokhtarnejad, L., Etebarian, H.R., Fazeli, M.R. & Jamalifar, H. 2011. Evaluation of different formulations of potential biocontrol yeast isolates efficacy on apple blue mold at storage condition. Archives of Phytopathology and Plant Protection, 44: 970–980.
Mokhtarnejad, L., Etebarian, H.R., Fazeli, M. R. & Khoshayand, M.R. 2011. Influence of adjuvants on shelf life of Pichia guillermondii in power carriers and their eficasy in controlling blue mold of apple. Iranian journal of plant pathology, 47(4): 437–448. (In Persian with English summary).
Mokhtarnejad, L., Etebarian, H.R., Sheikhpour, P., Farzaneh, M. & Khoshayand, M.R. 2015. Biomass production and formulation of biocontrol yeast Candida membranifaciens. Journal of Crop Protection, 4: 617–625. (In Persian with English summary).
Mokhtarnejad, L., Arzanlou, M. & Babai–Ahari, A. 2015. Molecular and phenotypic characterization of ascomycetous yeasts in hypersaline soils of Urmia Lake basin (NW Iran). Rostaniha, 16(2): 174–185. (In Persian with English summary).
Mokhtarnejad, L., Arzanlou, M., Babai–Ahari, A. & Turchetti, B. 2015. Molecular identification of basidiomycetous yeasts from soils in Iran. Rostaniha, 16(1): 61–80. (In Persian with English summary)
Moriguchi, K., Yamamoto, S., Tanaka, K., Kurata, N. & Suzuki, K. 2013. Trans–kingdom horizontal DNA transfer from bacteria to yeast is highly plastic due to natural polymorphisms in auxiliary nonessential recipient genes. PLoS ONE, 8:e74590.
Nagpure, A., Choudhary, B. & Gupta, R.K. 2014. Chitinases: in agriculture and human healthcare. Crit Rev Biotechnology, 34: 215–232.
Nandhini, M., Harish, S., Beaulah, A & Eraivan Arutkani Aiyanathan, K. 2019. Antagonistic activity of epiphytic yeast against grapes mold caused by Rhizopuss p. Journal of Pharmacognosy and Phytochemistry, 8(3): 2302–2306.
Nguyen, M.T. & Ranamukhaarachchi, S.L. 2010. Soil borne antagonists for bioogcal control of bacterial wilt disease caused by Ralstonia solanacearum in tomato and pepper. Journal of Plant Pathology, 92(2): 395–405.
Opulente, D. A. et al. 2019. Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Reserch.
Ortu, G., Demontis, M.A., Budroni, M., Goyard, S., d’Enfert, C. & Migheli, Q. 2005. Study of biofilm formation in Candida albicans may help understanding the biocontrol capability of a flor strain of Saccharomyces cerevisiae against the phytopathogenic fungus Penicillium expansum. Journal of Plant Pathology, 87:300.
Pandin, C., Le Coq, D., Canette, A., Aymerich, S. & Briandet, R. 2017. Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb Biotechnology, 10: 719–734.
Parafati, L., Vitale, A., Restuccia, C. & Cirvilleri, G. 2015. Biocontrol ability and action mechanism of food–isolated yeast strains against Botrytis cinerea causing post–harvest bunch rot of table grape. Food Microbiology, 47: 85–92.
Parafati, L., Vitale, A., Restuccia, C. & Cirvilleri, G. 2017b. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Food Microbiology, 63: 191–198.
Petersson, S., Hansen, M.W., Axberg, K., Hult, K. & Schnürer, J. 1998. Ochratoxin A accumulation in cultures of Penicillium verrucosum with the antagonistic yeast Pichia anomala and Saccharomyces cerevisiae. Mycological Research, 102: 1003–1008.
Pieterse, C.M., Zamioudis, C., Berendsen, R.L., Weller, D.M. Van Wees, S.C. & Bakker, P.A. 2014. Induced systemic resistance by beneficial microbes. Annual Revise of Phytopathology, 52: 347–375.
Pimenta, R.S., Silva, F.L., Silva, J.F., Morais, P.B., Braga, D.T., Rosa, C.A. & Correa, A. Jr. 2008. Biological control of Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Brazilian Journal of Microbiology, 39: 85–90.
Pitt, J.I. & Hocking, A.D. 1997. Fungi and food spoilage. 2nd edition. Blackie Academic & Professional, London, UK. 593 pp.
Pizzolitto, R.P., Armando, M.R., Combina, M., Cavaglieri, L.R., Dalcero, A.M. & Salvano, M.A. 2012. Evaluation of Saccharomyces cerevisiae strains as probiotic agent with aflatoxin B(1) adsorption ability for use in poultry feedstuffs. J Environ Sci Health.
Prasongsuk, S., Lotrakul, P., Ali, I., Bankeeree, W. & Punnapayak, H. 2018. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiology (Praha), 63: 129–140.
Pretscher, J. et al. 2018. Yeasts from different habitats and their potential as biocontrol agents. Fermentation, 4: 31.
Price, N.P., Manitchotpisit, P., Vermillion, K.E., Bowman, M.J. & Leathers, T.D. 2013. Structural characterization of novel extracellular liamocins (mannitol oils) produced by Aureobasidium pullulans strain NRRL 50380. Carbohydr Reserch, 370: 24–32.
Price, N.P., Bischoff, K.M., Leathers, T.D., Cosse, A.A. & Manitchotpisit, P. 2017. Polyols, not sugars, determine the structural diversity of anti–streptococcal liamocins produced by Aureobasidium pullulans strain NRRL 50380. J Antibiot (Tokyo), 70: 136–141.
Punja, Z.K. & Utkhede, R.S. 2003. Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnology, 21: 400–407.
Querol, A. & Fleet, G.H. (eds). 2006. Yeasts in food and beverages. The Yeast Handbook, vol 2. Springer, Heidelberg.
Richards, T.A., Leonard, G., Soanes, D., Talbot, N. 2011. Gene transfer into the fungi. Fungal Biology Revise, 25: 98–110.
Robert, V., Cardinali, G. & Casadevall, A. 2015. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 13: 18.
Roberts, R.G. 1990. Postharvest biological control of gray mold of apple by Cryptococcus laurentii. Phytopathology, 80: 526–530.
Rossouw, D., Meiring, S.P. & Bauer, F.F. 2018. Modifying Saccharomyces cerevisiae adhesion properties regulates yeast ecosystem dynamics. mSphere.
Sanna, M.L., Zara, S., Zara, G., Migheli, Q. Budroni, M. & Mannazzu, I. 2012. Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biology, 116: 769–777.
Sanna, M.L., Zara, G., Zara, S., Migheli, Q., Budroni, M. & Mannazzu, I. 2013. A putative phospholipase C is involved in Pichia fermentans dimorphic transition. Biochim Biophys Acta, 1840:344–349.
Sansone, G., Rezz, I., Calvente, V., Benuzzi, D. & Sanz de Tosetti, M.I. 2005. Control of Botrytis cinerea strains resistant to iprodione in apple with rhodotorulic acid and yeasts. Postharvest Bioloogy and Technology, 35: 245–251.
Schaible, U.E. & Kaufmann, S.H. 2005. A nutritive view on the hostpathogen interplay. Trends Microbiology, 13: 373–380.
Schena, L., Ippolito, A., Zahavi, T., Cohen, L., Nigro, F. & Droby, S. 1999. Genetic diversity and biocontrol activity Aureobasidium pullulans isolates against postharvest rots. Postharv Biology and Technology, 17: 189–199.
Scherm, B., Ortu, G., Muzzu, A., Budroni, M., Arras, G. & Migheli, Q. 2003. Biocontrol activity of antagonistic yeasts against Penicillium expansum on apple. Journal of Plant Pathology, 85: 205–213.
Schmitt, M.J. & Breinig, F. 2002. The viral killer system in yeast: from molecular biology to application. FEMS Microbiology Revise, 26: 257–276.
Schoeman, H., Wolfaardt, G., Botha, A., Van Rensburg, P. & Pretorius, I.S. 2009. Establishing a risk assessment process for release of genetically modified wine yeast into the environment. Canadian Journal of Microbiology, 55: 990–1002.
Seibold, A., Fried, A., Kunz, S., Moltmann, E., Lange, E. & Jelkmann, W. 2004. Yeasts as antagonists against fireblight. EPPO Bull.
Sezai, Z., Mihriban, Z. & Mümine, Y. 2014. Biocontrol Activity of the Local Strain of Metschnikowia pulcherrima on Different Postharvest Pathogens. Biotechnology Reserch, 2014: 397167.
Spadaro, D., Vola, R., Piano, S. & Gullino, M.L. 2002. Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherriima active against postharvest pathogens on apples. Postharvest biology and Technology, 24: 123–134.
Spadaro, D. & Droby, S. 2016. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sciene Technology, 47: 39–49.
Thambugala, K., Anupama Daranagama, D. Lander Phillips, A. G. & Kannangara, S. 2020. Fungi vs. Fungi in Biocontrol: An Overview of Fungal Antagonists Applied Against Fungal Plant Pathogens. Frontiers in cellular andinfection Microbiology, 10: DOI: 10.3389/fcimb.2020.604923
Tilocca, B., Balmas, V., Hassan, Z.U., Jaoua, S. & Migheli, Q. 2019. A proteomic investigation of Aspergillus carbonarius exposed to yeast volatilome or to its major component 2–phenylethanol reveals major shifts in fungal metabolism. International Journal of Food Microbiology, 306:108265.
Tsai, P.W., Yang, C.Y., Chang, H.T. & Lan, C.Y. 2011. Human antimicrobial peptide LL–37 inhibits adhesion of Candida albicans by interacting with yeast cell–wall carbohydrates. PLoS ONE, 6: e17755.
Vero, S., Mondino, P., Burgaeno, J., Soubes, M. & Wisniewski, M. 2002. Chracterizatioin of biological activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Boilogy and Technology, 26: 91–98.
Vepstaite–Monstavice, I et al. 2018. Saccharomyces paradoxus K66 killer system evidences expanded assortment of helper and satellite viruses. Viruses.
Wang, W., Chi, Z., Liu, G., Buzdar, M.A., Chi, Z. & Gu, Q. 2009a. Chemical and biological characterization of siderophore produced by the marine–derived Aureobasidium pullulans HN6.2 and its antibacterial activity. Biometals, 22: 965–972.
Wang, W.L., Chi, Z.M., Chi, Z., Li, J. & Wang, X.H. 2009b. Siderophore production by the marine–derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technology. 100: 2639–2641.
Weiss, A. & Mögel, G. 2006. Kunz S Development of “Boni–Protect”– a yeast preparation for use in the control of post–harvest diseases of apples. In: Boos M (ed) 12th International conference on cultivation technique and phytopathologtical problems in organic fruit–growing. Weinsberg, Germany, 113–117.
Williamson, M.A. & Fokkema, N. J.1985. Phyllosphere yeasts antagonize penetration from appressoria and subsequent infection of maize leaves by Colletotrichum graminicola. Netherlands Journal of Plant Pathology, 91: 265–276.
Wilson, C.L. & Chalutz, E. 1989. Postharvest biological control of Penicillium rots of citrus with antagonistic yeasts and bacteria. Scientia Horticulturae, 40: 105–112.
Wisniewski, M., Biles, C., Droby, S. R., Wilson, C. & Chalutz, E. 1991. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. 1. Characterization of attachment to Botrytis cinerea. Physiology Mol Plant, 39: 245–258.
Wisniewski, M., Wilson, C., Droby, S., Chalutz, E., El Ghaouth, A. & Stevens, C. 2007. Postharvest biocontrol: new concepts and applications.
Wisniewski, M. & Droby, S. 2012. Biopreservation of food and feed by postharvest biocontrol with microorganisms. In: Sundh I, Wilcks A, Goettel MS (eds) Beneficial microorganisms in agriculture, food and the environment. CABI International, Oxfordshire, 57–66.
Xu, H., Nobile, C.J. & Dongari–Bagtzoglou, A. 2013. Glucanase induces filamentation of the fungal pathogen Candida albicans. PLoS ONE, 8:e63736.
Yan, F., Xu, S., Chen, Y. & Zheng, X. 2014. Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection incherry tomato fruit. Postharvest Biology and Technology, 97: 32–35.
Yu, T. & Zheng, X.D. 2006. Salicylic acid enhances biocontrol efficacy of the antagonist Cryptococcus laurentii in apple fruit. Jurnal of Plant Growth Regul, 25: 166–174.
Zajc, J., Gostincar, C., Cernosa, A. & Gunde–Cimerman, N. 2019. Stresstolerant yeasts: opportunistic pathogenicity versus biocontrol potential. Genes (Basel), 10: 42.
Ziedan, H.E. & Farrag, S.H. 2011. Application of yeasts as biocontrol agents for controlling foliar diseases on sugar beet plants. Journal of Agricultural Technology, 7(6): 1789–1799.
Zha, D., Xu, L., Zhang, H. & Yan, Y. 2014. Molecular identification of lipase LipA from Pseudomonas protegens Pf–5 and characterization of two whole–cell biocatalysts. Journal of Microbiology and Biotechnology, 24: 619–628.
Zhang, X., Boqiang, L., Zhang, Z., Chen, Y. & Tian, S. 2020. Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit. Journal of fungi, 6:15.doi:10.3390/jof6030158.