جداسازی و شناسایی سودوموناس‌های فلورسنت ریزوسفر خیار و ارزیابی توان آنتاگونیستی آن‌ها به‌عنوان عوامل کنترل بیولوژیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا- همدان

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان

چکیده

سودوموناس‌های فلورسنت گروه مهمی از باکتری‌های محرک رشد به‌شمار می‌آیند که می‌توانند به‌صورت مستقیم و یا غیرمستقیم رشد گیاهان را بهبود بخشیده و یا عوامل بیماری‌زای گیاهی را محدود و یا سرکوب نمایند. هدف از این پژوهش دستیابی به‌جدایه‌های فلورسنت آنتاگونیست مؤثر علیه بیماری لکه زاویه­ای در ریزوسفر خیار بود. برای انجام این تحقیق، طی سال‌های 92-1391، 120 جدایه‌ی باکتریایی از ریزوسفر خیار در مناطق مختلف استان همدان جداسازی شد که در این میان 25 جدایه به‌لحاظ فنوتیپی به دو گونه‌ی Pseudomonas fluorescens و P. putida تعلق داشت. سپس، در شرایط آزمایشگاه، علاوه بر تأثیرآنتاگونیستی­ جدایه­ها در مقابل Pseudomonas syringae pv. lachrymans (عامل بیماری لکه زاویه­ای خیار)، برخی ویژگی‌های تحریک­کنندگی این جدایه­ها نیز بررسی شد. براساس بررسی­های آزمایشگاهی، پنج جدایه‌ی (BSU390، BSU630، BSU205، BSU161 و BSU391) با قطر هاله بازدارندگی بیشتر از هفت میلی­متر، برای بررسی­های بعدی در شرایط گلخانه­ای انتخاب شد. محدوده‌ی قطر هاله بازدارندگی برای این پنج جدایه از 66/7 تا 22 میلی­متر مشخص شد. همچنین در این ارزیابی، اثر جدایه­های باکتریایی در کنترل توسعه‌ی بیماری از طریق تعیین سطح زیر منحنی پیشرفت بیماری و افزایش بیوماس گیاه خیار مورد بررسی قرار گرفت. نتایج بررسی گلخانه­ای نشان داد که جدایه­های BSU390، BSU205 و BSU630 کارایی بیوکنترلی بالایی دارند. در شرایط گلخانه­ای این جدایه­ها به­تنهایی در مقایسه با گیاه شاهد، در سطح احتمال 5%  باعث افزایش ارتفاع گیاه و وزن خشک گیاه شدند. ازاین‌رو، جدایه­های BSU390، BSU205 و BSU630 در کنترل بیماری لکه زاویه­ای خیار و افزایش رشد به‌عنوان ریزوباکتری­های محرک رشد یا در مدیریت تلفیقی بیماری پتانسیل استفاده را دارند و لازم است کارایی این جدایه‌ها در شرایط مختلف مزرعه نیز مورد بررسی قرارگیرد.

 

کلیدواژه‌ها


Ahemad, M. & Khan, M.S. 2012. Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Annals Microbiology, 62: 1531-1540.
Alexander, D.B. & Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils, 2: 39-4.
Aliye, N., Fininsa, C. & Hiskias, Y. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control. 47: 282-288.
Alstrom, S. & Burns, R.G. 1989. Cyanid production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7: 232-238.
Arsenijevic, M., Obradovic, A., Stevanovic, D. & Ivanovic, M. 1998. Antagonistic effect of some saprophytic bacteria to Pseudomonas syringae pv. phaseolicola and Xanthomonas campestris pv. phaseoli. Biological Control of Fungal and Bacterial Plant Pathogens, IOBC Bulletin, 21 (9): 297-300.
Beneduzi, A., Ambrosini, A. & Passaglia, L.M.P. 2012. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35, 4 (suppl): 1044-1051.
Bent, E. Tuzan, S. Chanway C.P. & Enebak, S. 2000. Alteration in plant growth and in root hormone levels of lodgeple pines inoculatied with rhizobacteria. Canadian Journal of Microbiology, 47: 793-800.
Bhattacharjee P.N. & Jha, D.K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28: 1327-1350.
Cappuccino, J.C. & Sherman, N. 1992. Microbiology: A Laboratory Manual. Third ed. Benjamin/Cummings Publishing Companies based in New York, pp. 125-179.
Carrim, A.J.I., Barbosa E.C. & Gonalves Vieira, J.D. 2006. Enzymatic activity of endophytic bacterial isolates of Jacaranda decurrens Cham. (Carobinha-docampo). Brazilian Archives of Biology and Technology. 49: 353-359.
Garrett, K.A. & Mundt, C.C. 2000. Host diversity can reduce potato late blight severity for focal and general patterns of primary inoculum. Phytopathology, 90: 1307-1312.
Glick, B.R. 2012. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Hindawi Publishing Corporation, Scientifica.
Guo, J.H., Qi, H.Y., Guo, Y.H., Ge, H., Gong, L.Y., Zhang, L.X. & Sun, P.H. 2004. Biocontrol of tomato wilt by growth-promoting rhizobacteria. Biological Control, 29, 66-72.
Haas, D. & Défago, G. 2005. Biological control of soilborne pathogens by fluorescent pseudomonads. Nature Review of Microbiolology, 3: 307-319.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W.F. & Kloepper, J.W. 1997. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43: 895-914.
Henok, K., Fassil, A. & Yaynu, H. 2007. Evaluation of of Pseudomonas fluorescens isolates as biocontrol agents against bacterial wilt caused by Ralstonia (Pseudomonas) solanacearum. Pest Management Journal of Ethiopia, 11: 9-18.
Illmer, P., Barbato, A. & Schinner, F. 1995. Solubilization of hardy soluble AlPO4 with P- solubilizing microorganisms. Soil Biology and Biochemistry, 27: 265-270.
King, E.O., Ward, M.K. & Raney, D.E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. Journal of Laboratory and Clinical Medicine. 44: 301-307.
Klement, Z., Rudolph, K. & Sand, D.C. 1990. Methods in phytobacteriology. Akademiai Kiado Budapest, 540pp.
Kopen, J., Hodrov, B. & Stewart, C.S. 1996. The isolation and characterization of a rumen chitinolytic bacterium. Letters in Applied Microbiology, 23: 195-198.
Lemessa, F. & Zeller, W. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biological Control, 42: 336-344.
Maurhofer, M., Reimmann, C., Schmidli-sacherer, P., Heeb, S., Haas, D., & Defago, G. 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of system resistance in tobacco against tobacco necrosis virus. Phytopathology, 88: 678-684.
McInroy, J.A. & Kloepper, J.W. 1995. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Canadian Journal of Microbiology, 41, 895-901.
Maleki, M., Mostafaee, S., Mokhtarnejad, L. & Farzaneh, M. 2010. Characterization of Pseudomonas fluorescens strain CV6 isolated from cucumber rhizosphere in Varamin as a potential biocontrol agent. Australian Journal of Crop Science, 4(9): 676-683.
Miller, J.H. 1974. Experiments in Molecular Genetics. 2nd ed. Cold Spring Harbor Lab., Cold Spring Harbor, NY.
Moreira, R.R., Nesi, C.N. & Mio, L.L.M.D. 2014. Bacillus spp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot. Biological Control, 72:30-37.
Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17: 362-70.
Prabhat, N.J, Garima, G., Prameela J. & Mehrotra, R. 2013. Association of Rhizospheric/Endophytic Bacteria with Plants: A Potential Gateway to Sustainable Agriculture. Greener Journal of Agricultural Sciences, 3 (2): 073-084.
Ramesh, R. & Phadke, G.S. 2012. Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection, 37: 35-41.
Ran, L.X., Liu, C.Y., Wu, G.J., van Loon, L.C. & Bakker, P.A.H.M., 2005. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biological Control, 32: 111-120.
Ryan, A.D., Kinkel, L.L. & Schottel, J.L. 2004. Effect of pathogen isolate, potato cultivar and antagonist strain on potato scab severity and biological control. Biochemical Science and Technology, 14: 301-311.
Saharan, B.S. & Nehra, V. 2011. Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research, LSMR-21.
Schaad, N.W., Jones, J.B. & Chun, W. 2001. Laboratory Guide for Identification of Plant Pathogenic Bacteria. American Phytopathological Society. St. Paul, Minnesota, 373 pp.
Sierra, J.M. 1957. A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substances. Antonie van Leeuwenhock Ned. Tijdschr. Hyg. 23: 15-25.
Weller, D.M. & Cook, R.J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology, 78: 463-469.